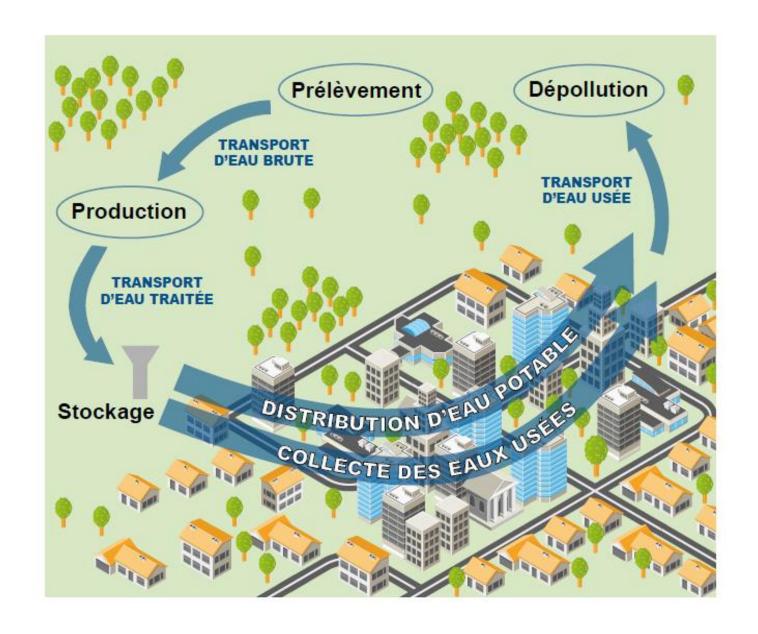
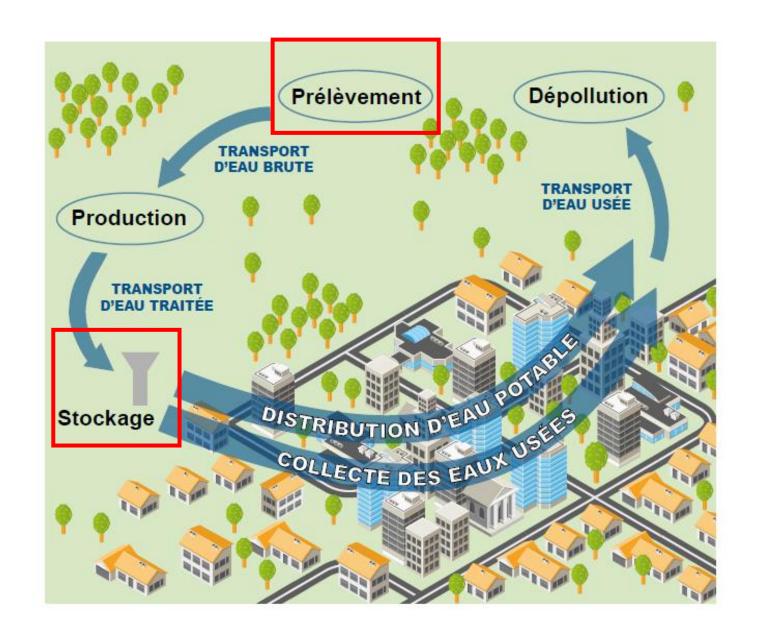


Modèles mathématiques pour la prévision des demandes en eau des usagers et du niveau des nappes phréatiques

- Université: M. Chabaud, H. Munive, R. Catellier, S. Rubenthaler, T. Laloë
- Eau d'Azur :, A. Maupetit





Niveau des nappes

Niveau des nappes

Niveau des nappes : contexte

Eau d'Azur : distribution continue d'eau en qualité et quantité Nécessite gestion de la ressource (prélèvement → distribution)

Changements climatiques:

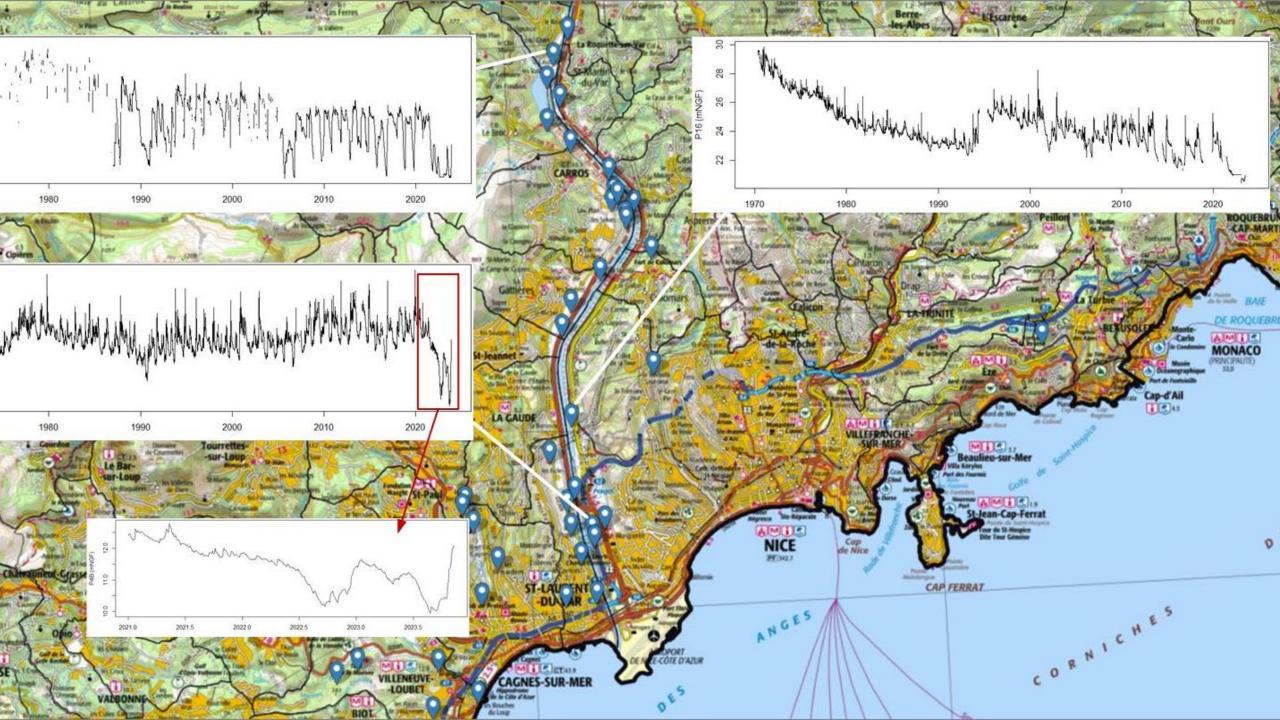
- → Problématiques de tension sur la ressource
 - → Actions de sécurisation des prélèvements souterrains
 - → Mise en place de système d'alimentation de secours

→ Anticiper le niveau de nappe phréatique

- > à 10 jours
- ➢ À 3 mois

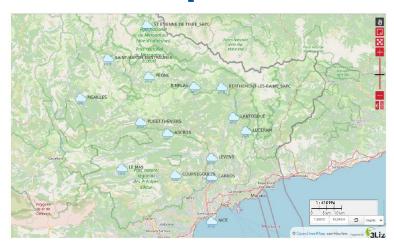
Contexte géographique : basse vallée du Var

Rivière de récolte : La Vésubie



Vésubie et station électrique EDF

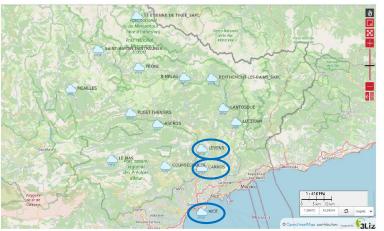
Station de pompage



Données : Description des valeurs manquantes

Variable	Première date	NA restantes
X09724X0023.P2	2007-01-01	248 (3.923 %)
X09728X0032.P15	2008-06-25	1064 (18.408 %)
X09994X0399.P.35	2008-06-25	1036 (17.924 %)
X09728X0099.P38	2008-06-26	1258 (21.768 %)
X09728X0168.PZS10A	2009-03-10	605 (10.956 %)
X09994X0521.P4B	2007-01-16	488 (7.739 %)
X09735X0161.P33BIS	2008-06-25	2671 (46.211 %)
X09735X0149.P34BIS	2008-06-25	3924 (67.889 %)
X09735X0214.PZS9AM	2021-09-02	559 (58.048 %)
PZ_Roguez	2021-04-14	500 (45.290 %)
PZ_Drap	2014-07-11	515 (14.414 %)
PZ_Roguez_REA	2022-10-05	5 (0.885 %)
PZ_P6_Les_Plans_REA	2023-02-01	5 (1.121 %)
PZ_Pugets_REA	2022-10-05	5 (0.885 %)
PZ_Plan_du_Var_REA	2023-02-01	5 (1.121 %)
PZ2_Roquebilliere_REA	2022-10-05	5 (0.885 %)
PZ_Bastion_REA	2023-02-01	19 (4.260 %)
$PZ_Gattieres_REA$	2023-11-28	37 (25.342 %)
PZ_Bec_Esteron_REA	2023-04-21	303 (82.561 %)

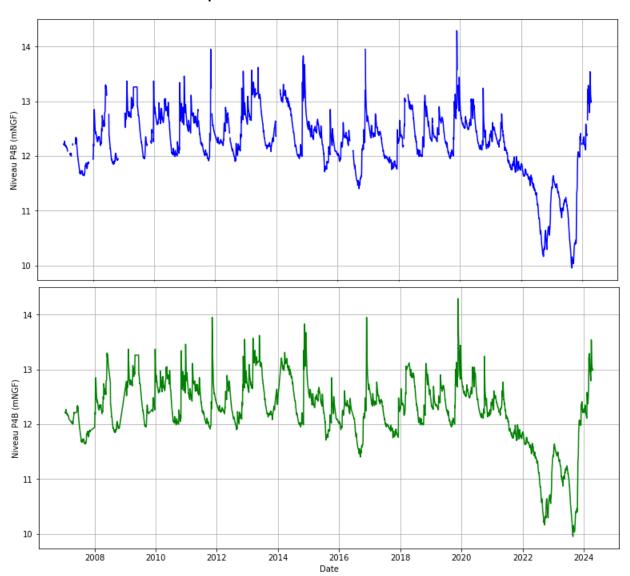
Variable	Première date	NA restantes
cumul_ASCROS	1987-08-14	6 (0.046 %)
${\it cumul_CARROS_SAPC}$	1997-03-10	690 (7.009 %)
${\it cumul_COURSEGOULES_SAPC}$	1997-03-10	$170\ (1.727\ \%)$
$cumul_LANTOSQUE_SAPC$	2006-12-27	6~(0.095~%)
cumul_LEVENS	2008-05-16	$8 \ (0.137 \ \%)$
cumul_PEIRA.CAVA	1991-02-08	747~(6.220~%)
cumul_LE.MAS	2006-04-20	20 (0.304 %)
cumul_NICE	1987-08-14	6~(0.046~%)
cumul_PEONE	2002-11-20	$23\ (0.295\ \%)$
${\it cumul_PUGET.THENIERS_SAPC}$	1997-03-09	2590 (26.308 %)
${\it cumul_RIMPLAS_SAPC}$	2007-02-14	7 (0.112 %)
${\it cumul_BERTHEMONT.LES.BAINS_SAPC}$	2023-07-04	$4\ (1.365\ \%)$
${\it cumul_ST.ETIENNE.DE.TINEE_SAPC}$	2007-03-29	17 (0.273 %)
${\it cumul_ST.MARTIN.D.ENTRAUNES_SAPC}$	2007-05-07	65 (1.049 %)


Données:

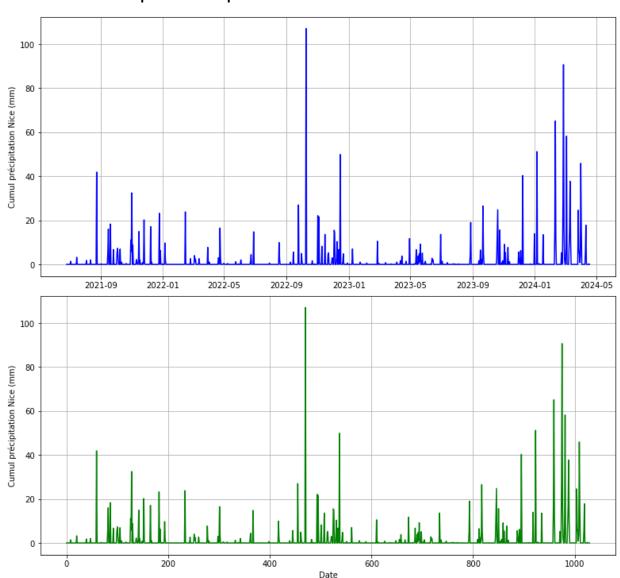
Focus P4B:

- Historique long (2007)
- 8% de valeurs manquantes (488 sur 6306)
- Représentatif du comportement global de la nappe (<u>corrélations</u>)

Variable	Première date	NA restantes
X09724X0023.P2	2007-01-01	248 (3.923 %)
X09728X0032.P15	2008-06-25	1064 (18.408 %)
X09994X0399.P.35	2008-06-25	1036 (17.924 %)
X09728X0099.P38	2008-06-26	1258 (21.768 %)
X09728X0168.PZS10A	2009-03-10	605 (10.956 %)
X09994X0521.P4B	2007-01-16	488 (7.739 %)
X09735X0161.P33BIS	2008-06-25	2671 (46.211 %)
X09735X0149.P34BIS	2008-06-25	3924 (67.889 %)
X09735X0214.PZS9AM	2021-09-02	559 (58.048 %)
PZ_Roguez	2021-04-14	500 (45.290 %)
PZ_Drap	2014-07-11	515 (14.414 %)
PZ_Roguez_REA	2022-10-05	5 (0.885 %)
PZ_P6_Les_Plans_REA	2023-02-01	5 (1.121 %)
PZ_Pugets_REA	2022-10-05	5 (0.885 %)
PZ_Plan_du_Var_REA	2023-02-01	5 (1.121 %)
PZ2_Roquebilliere_REA	2022-10-05	5 (0.885 %)
PZ_Bastion_REA	2023-02-01	19 (4.260 %)
$PZ_Gattieres_REA$	2023-11-28	37 (25.342 %)
PZ_Bec_Esteron_REA	2023-04-21	303 (82.561 %)

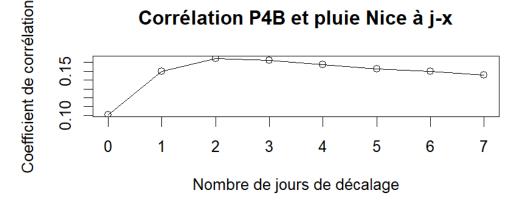

Focus Nice, Carros et Levens :

→ Stations
géographiquement les
plus proches


Variable	Première date	NA restantes
cumul_ASCROS	1987-08-14	6 (0.046 %)
$cumul_CARROS_SAPC$	1997-03-10	690 (7.009 %)
$cumul_COURSEGOULES_SAPC$	1997-03-10	170 (1.727 %)
cumul_LANTOSQUE_SAPC	2006-12-27	6~(0.095~%)
cumul_LEVENS	2008-05-16	8 (0.137 %)
cumul_PEIRA.CAVA	1991-02-08	747 (6.220 %)
cumul_LE.MAS	2006-04-20	20 (0.304 %)
cumul_NICE	1987-08-14	6 (0.046 %)
cumul_PEONE	2002-11-20	23 (0.295 %)
$cumul_PUGET.THENIERS_SAPC$	1997-03-09	$2590\ (26.308\ \%)$
$cumul_RIMPLAS_SAPC$	2007-02-14	7 (0.112 %)
${\it cumul_BERTHEMONT.LES.BAINS_SAPC}$	2023-07-04	$4\ (1.365\ \%)$
${\it cumul_ST.ETIENNE.DE.TINEE_SAPC}$	2007-03-29	17~(0.273~%)
cumul_ST.MARTIN.D.ENTRAUNES_SAPO	2007-05-07	65 (1.049 %)

Données : Interpolation des valeurs manquantes

Cumuls : Interpolation par la médiane de la station



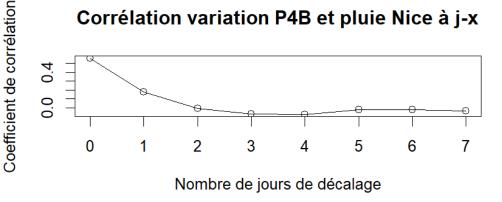
Données : Corrélations entre niveau de nappe et précipitations

Corrélation entre niveau de nappe et précipitations

Coefficient de corrélation max à J+2 ~0,16

→ Niveau de nappe faiblement corrélé aux précipitations de l'avantveille.

Corrélation entre variation du niveau de nappe et précipitations Coefficient de corrélation max à J ~0,60


→ Variation du niveau de nappe corrélée aux précipitations de la veille.

Coefficient de corrélation avec les précipitations de

Carros et Levens > Nice

→ Variation du niveau de nappe d'avantage corrélées aux précipitations en amont du piézomètre.

Corrélation variation P4B et pluie Nice à j-x

Méthode 1 : SARIMA

Seasonal AutoRegressive Integrated Moving Average

Particulièrement efficace pour identifier les tendances et les motifs saisonniers

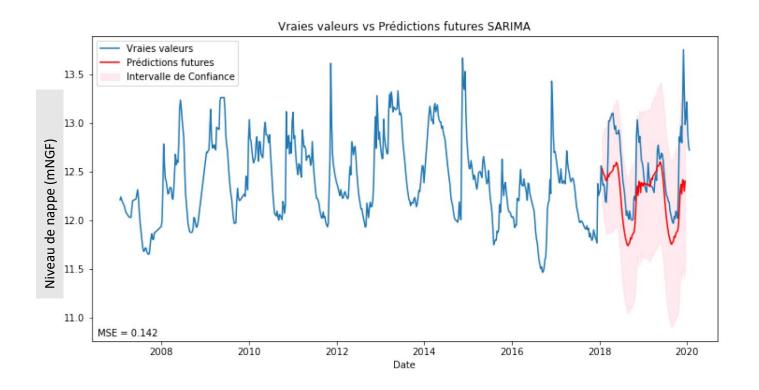
- Niveau de nappe : $(X_t)_t$,
- Lien entre X_{t-1}, \dots, X_{t-p} , des valeurs de bruit $\epsilon_t, \epsilon_{t-1}, \dots, \epsilon_{t-q}$.
- Le *Seasonal* veux dire que X_t est également fonction de $X_{t-52}, \cdots, X_{t-(2\times52), \cdots, X_{t-P\times52}}$, et de $\epsilon_{t-52}, \cdots, \epsilon_{t-Q\times52}$.
- La valeur significative $\Delta X_t = X_t X_{t-1}$,
- 6 paramêtres : $(p, d, q)(P, D, Q)_{52}$.

L'opérateur de shift B est défini par $BX_t = X_{t-1}$, alors (X_t) est un $ARIMA(p,d,q)_{(P,D,Q)_{52}}$ s'il existe $(\theta_i)_{i \in \{1,\cdots,p\}}$, $(\Theta_j)_{j \in \{1,\cdots,P\}}$, $(\phi_k)_{k \in \{0,\cdots,q\}}$ et $(\Phi_l)_{l \in \{0,\cdots,Q\}}$ tels que

$$(1-B)^{d}(1-B^{s})^{D}X_{t} = c + \frac{(\phi_{0} + \phi_{1}B + \dots + \phi_{q}B^{q})(\Phi_{0} + \Phi_{1}B^{s} + \dots + \Phi_{Q}B^{sQ})}{(1-\theta_{1}B - \dots - \theta_{p}B^{p})(1-\Theta_{1}B^{s} - \dots - \Theta_{p}B^{sP})}\epsilon_{t}.$$

Inconvénients

Choix des paramètres par tâtonnement


Modéliser le niveau de nappe

SARIMA(X)

Données agrégées par semaine, Entrainement : 2007-2018; test : 2018-2020

Métrique : $MSE(\hat{\theta}) \stackrel{\text{def}}{=} \mathbb{E}\left[(\hat{\theta} - \theta)^2\right]$

 \rightarrow Meilleur modèle : SARIMĀ(1,1,1)(0,1,1)₅₂

Méthode 1 : SARIMAX

Seasonal AutoRegressive Integrated Moving Average

Particulièrement efficace pour identifier les tendances et les motifs saisonniers

- Niveau de nappe : $(X_t)_t$,
- Lien entre X_{t-1}, \dots, X_{t-p} , des valeurs de bruit $\epsilon_t, \epsilon_{t-1}, \dots, \epsilon_{t-q}$.
- Le *Seasonal* veux dire que X_t est également fonction de $X_{t-52}, \cdots, X_{t-(2\times52), \cdots, X_{t-P\times52}}$, et de $\epsilon_{t-52}, \cdots, \epsilon_{t-Q\times52}$.
- La valeur significative $\Delta X_t = X_t X_{t-1}$,
- 6 paramêtres : $(p, d, q)(P, D, Q)_{52}$.

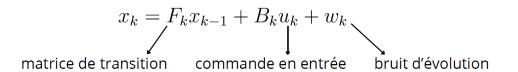
 $\text{L'op\'erateur de shift B est d\'efini par $BX_t = X_{t-1}$, alors (X_t) est un $ARIMA(p,d,q)_{(P,D,Q)}$ s'il existe $(\theta_i)_{i \in \{1,\cdots,p\}}$, $(\Theta_j)_{j \in \{1,\cdots,P\}}$' $$ $(\phi_k)_{k \in \{0,\cdots,q\}}$ et $(\Phi_l)_{l \in \{0,\cdots,Q\}}$ tels que $$ $(1-B)^d(1-B^s)^DX_t = c + \frac{(\phi_0 + \phi_1 B + \cdots + \phi_q B^q)(\Phi_0 + \Phi_1 B^s + \cdots + \Phi_Q B^{sQ})}{(1-\theta_1 B - \cdots - \theta_n B^p)(1-\Theta_1 B^s - \cdots - \Theta_P B^{sP})} \epsilon_t + (\beta_0 Y_0 + \beta_1 Y_1 + \cdots + \beta_N Y_N) \,.$

• Y représente le niveau des précipitations

Inconvénients

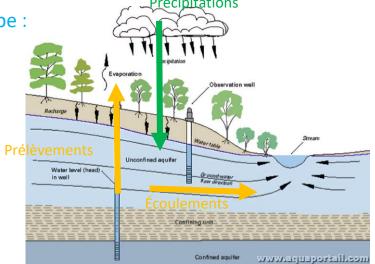
Choix des paramètres par tâtonnement

Méthode 3 : Filtre de Kalman


Estimateur récursif

Pour estimer l'état courant, seules l'estimation de l'état précédent et les mesures actuelles sont nécessaires.

Estime les variations du niveau de nappe à partir des volumes d'eau entrants et sortants de la nappe


Étapes

- 1- Prédiction
- 2- Mise à jour du modèle
- 3- Prévisions au pas de temps suivant

Données supplémentaires de volumes sortants de la nappe :

- Prélèvements faits par Eau d'Azur
- Écoulement naturel souterrain moyen

Méthode 3 : Filtre de Kalman

Données supplémentaires de volumes sortants de la nappe :

Écoulement naturel souterrain moyen (constante)

$$\Delta X_t = \sum_{i=0}^{q_{rain}} a_i^T Y_{t-i} + \sum_{j=0}^{q_{withdrawals}} b_j^T Z_{t-j} + \sum_{k=0}^{q_{noise}} b_k \epsilon_{t-k}$$

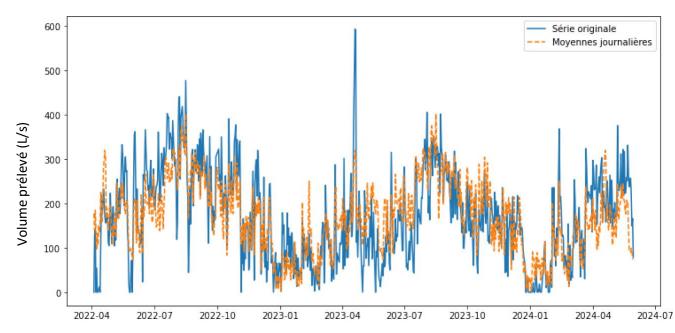
Débit volumique Q (m³/s) avec la loi de Darcy :

$$Q = k \times A \times \frac{\Delta H}{L}$$

Avec:

- A: la surface de la section étudiée (m²);
- k : la conductivité hydraulique du milieu poreux (m/s);
- ΔH / L : le gradient hydraulique, où ΔH est la différence des hauteurs piézométriques en amont et en aval de l'échantillon, L est la longueur de l'échantillon.

Méthode 3 : Filtre de Kalman


Données supplémentaires de volumes sortants de la nappe :

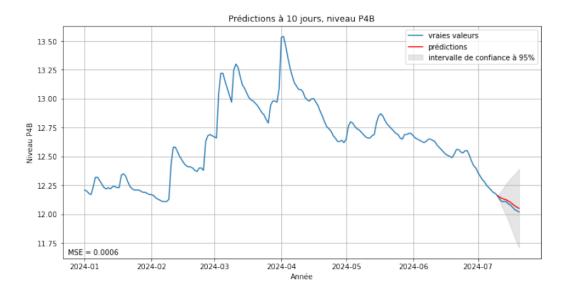
- Écoulement naturel souterrain moyen (constante)
- Prélèvements faits par Eau d'Azur (07/2021 05/2024)

Modélisation des prélèvements sur la période étudiée (2007-2020) :

Hypothèse: prélèvements identiques d'une année sur l'autre

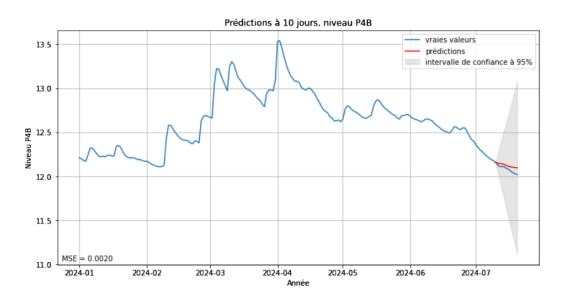
Prélèvement(Jn20xx) = moyenne (Prélèvement(Jn2021) à Prélèvement(Jn2024))

Résultat 3 : Modéliser le niveau de nappe


Prévisions à 10 jours avec les prévisions météo de précipitations

Comparaison des prédictions effectuées avec les observations météo et celle effectuées avec les prévisions météo

Modèle de prévision utilisé : GFS (Global Forecast System) haute résolution


Mais maillage large (~28km) non représentatif des microclimats potentiels de la région

Régime « sécheresse »

→ Bonne prédiction à 10 jours

Régime « pluvieux »

Comparaison des méthodes

	SARIMA	SARIMAX	Kalman
Historique considéré	11 ans	11 ans	~3 ans
Prévisions faites	~2 ans (700 j)	~2 ans (700 j)	~3 ans
Données exogènes	non	météo	météo, prélèvements, écoulements
MSE	0,142	0,073	10 ⁻³ à 10 ⁻⁴
Intervalles de confiance	~ constant	croissant	croissant

→ Difficulté de comparaison des résultats

Modèles incluant les prévisions météo

Nécessaire à la prévision du niveau de nappe

Dépendent de la qualité des prévisions météo → limite à 3 ou 10 jours de prévision

→ Quelles stations météo inclure ?

Modèle « filtre de Kalman » avec deux régimes

Choix du régime à utiliser au moment de la prédiction pour les jours suivants ? Intervalle de confiance exponentiel.

→ Les variables incluses dans le modèle sont-elles pertinentes ?

Analyses supplémentaires et perspectives

Ecoulements souterrains

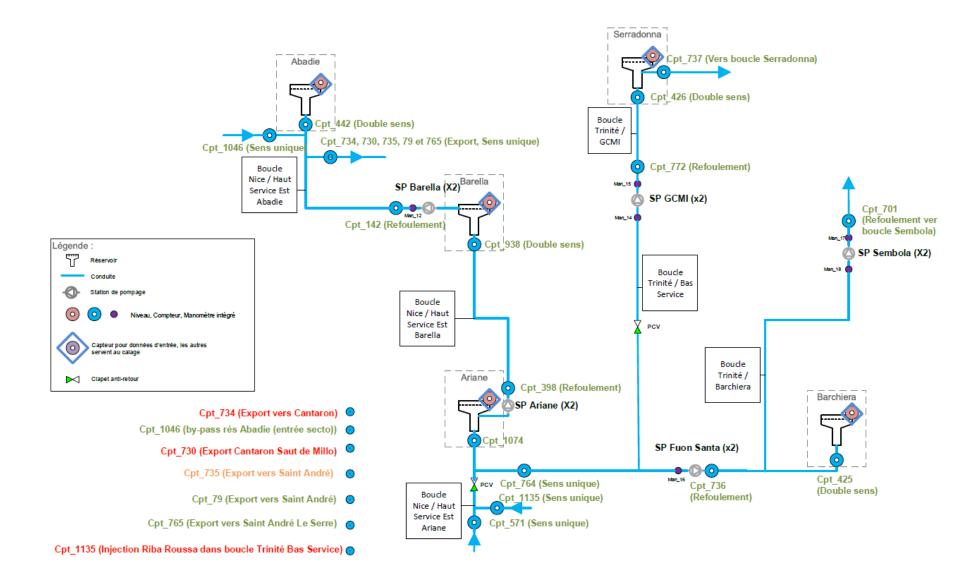
Ne pas inclure les écoulements souterrains dans le modèle ou calculer un débit volumique à plus petite échelle spatiale et temporelle

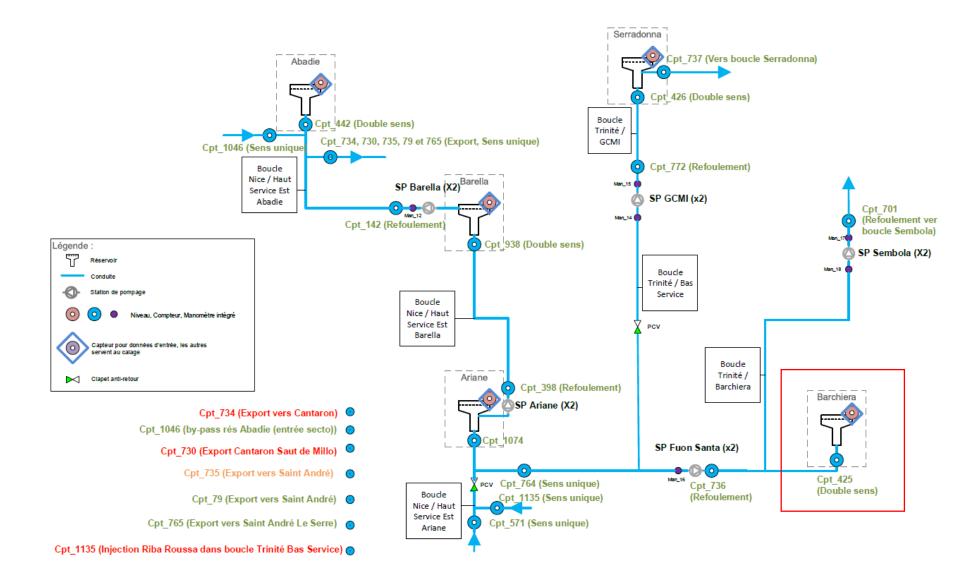
Prélèvements Eau d'Azur

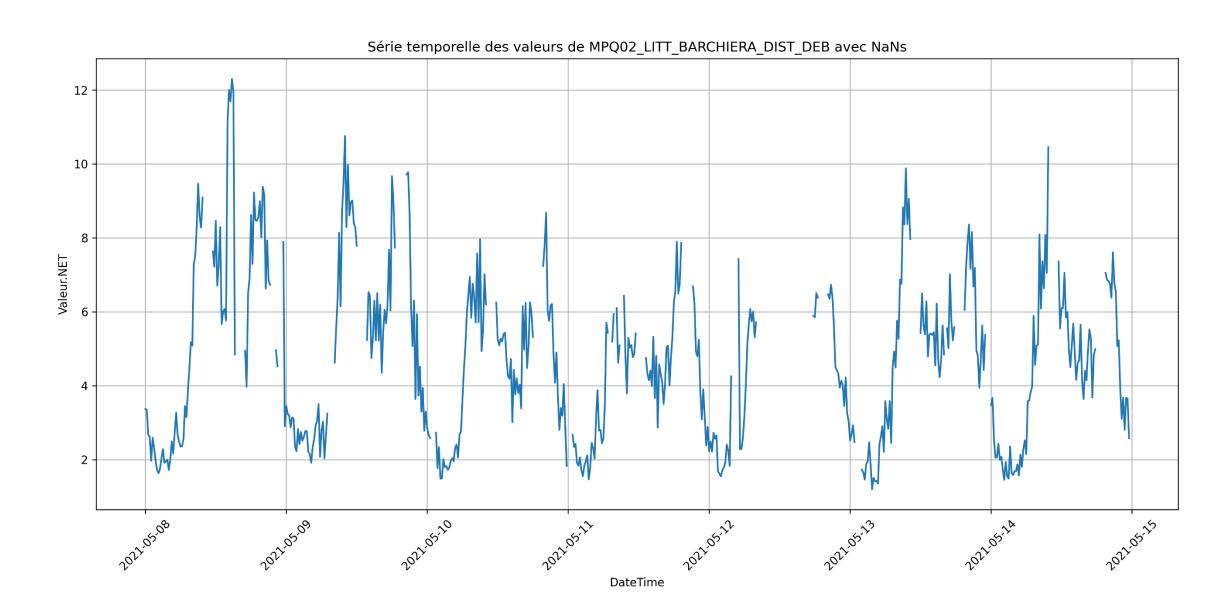
Inclure les prélèvements de j et j-1 dans le modèle. Enlever les prélèvements antérieurs.

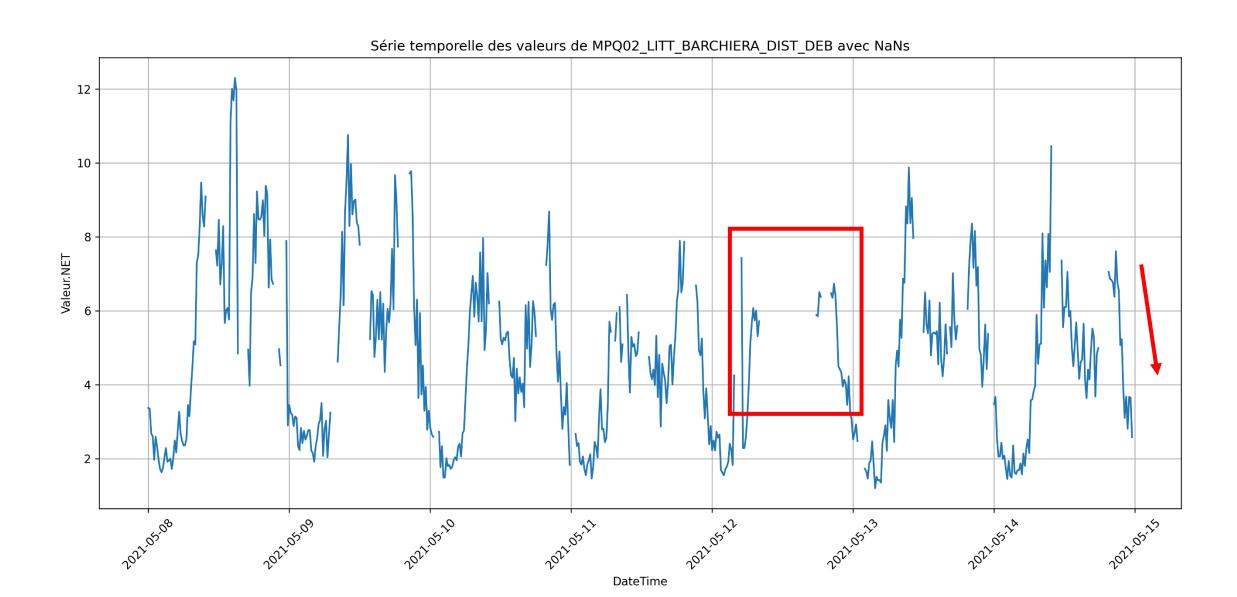
Stations météo

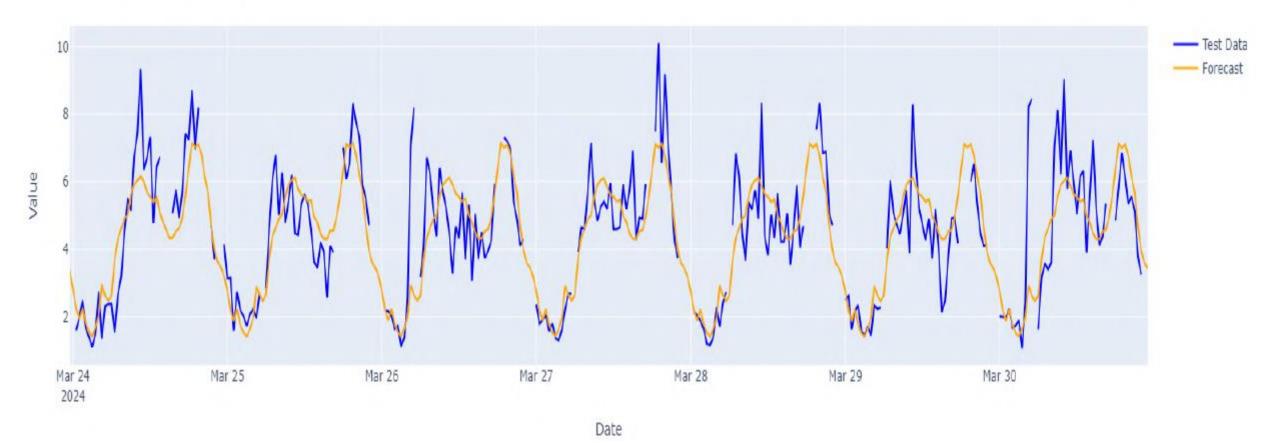
Inclure les stations météo des cercles 1, 2 et 3 (enlever Peone, Saint Étienne de Tinée et Saint Martin d'Entraunes)

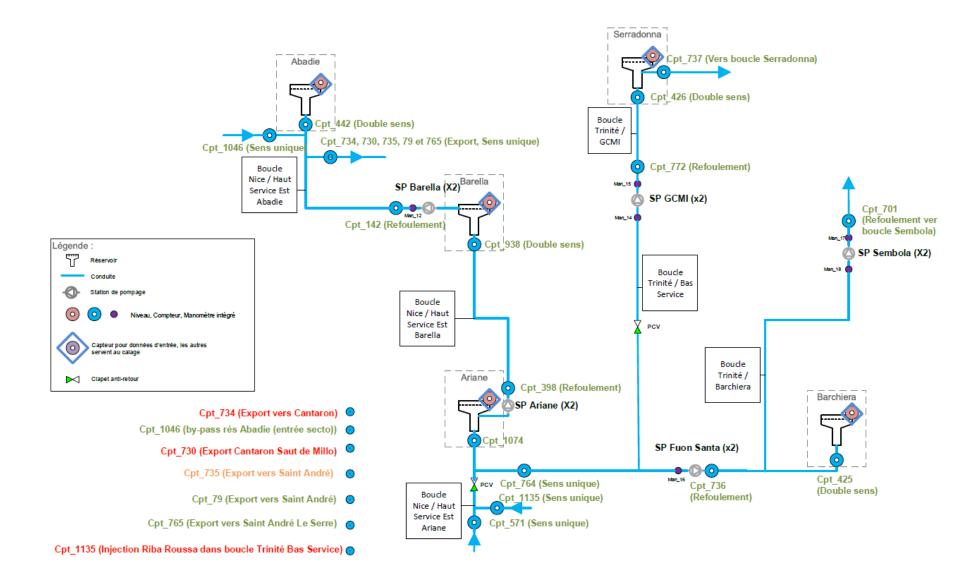

Débits du Var et affluents ??


→ Prévisions à 3 mois


Classification d'année type avec des méthodes s'appuyant sur la signature des données


Consommation





Méthodologie

- But : Prévoir la consommation (24h)
- Jeux de données : 15min, sur plusieurs années
- Méthodologie :
 - > Exploration des données
 - Complétion les données manquantes (interpolation via segmentation et régression)
 - > Prédiction (via régression)
 - ➤ Stratégie :
 - méthode d'apprentissage/régression pour l'interpolation des données (OSSPI)
 - Méthode de régression (SARIMA) pour la prédiction

Métrique	Valeurs réelles (NaN)	Valeurs interpolées (OSSPI)
Temps d'exécution moyen	26m12s	
MSE moyen	2.1880	1.7275
MAPE moyen	22.4383%	18.7228%
Accuracy moyenne	77.8950%	81.2772%

Merci pour votre attention